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PROLONGATION OF CONNECTIONS TO BUNDLES
OF INFINITELY NEAR POINTS

AKTHIKO MORIMOTO

Introduction

The purpose of this paper is to generalize the results of [S] to the bundles
of infinitely near points of A4-kinds in the sense of A. Weil [7], which gener-
alizes the notions of p7-jets in the sense of C. Ehresmann [1], [2]. Our results
naturally generalizes the results of several authors, e.g., [4], [8], [10]. In fact,
we have treated the same problem in the author’s lecture notes (cf. [6, Part V]).
However, in [6] we fully used the basis and structure constants of the local
algebra A, and were obliged to consider (4)-lifts of vector fields, 1-forms or
tensor fields of type (p,g) with p=0 or 1, where 1 =0,1,2,---,N and
N + 1 = dim 4. Moreover, the geometric meaning of (2)-lifts for 2 = 1, 2,
«+-, N are not so clear as that of (0)-lifts. In this paper, we shall essentially
not use the basis and structure constants of the algebra 4, and shall show that
there exists essentially only one lift, which has a significant geometric meaning,
and other (4)-lifts can be derived naturally from that lift. Further, the proofs
in [6] are much simplified, and some of results are somewhat sharpened (cf. [6,
Theorem 6.6]).

In § 1, we explain the notion of local algebras and the infinitely near points
of A-kind which will be simply called A-points. The covariant functor, which
assigns to each manifold M its bundle M+ of infinitely near points, has many
nice properties similar to the functor which assigns to M its tangent bundle
T(M). In particular, if G is a Lie group (acting on a manifold M), then G4 is
also a Lie group (acting on M4).

In § 2, by means of two different methods we define two 4-module structures
on the tangent space to M4 at each point of M4, and we shall in fact show
that these two 4-module structures are essentially the same.

In § 3, we shall define the lift of vector fields and establish some relations
between the lift of functions and the bracket of vector fields.

In §4, § 5, we shall consider the lifting of covariant tensor fields and (1, 1)-
tensor fields respectively. We shall prove that the lifting /4 of an almost com-
plex structure J is integrable if and only if J is integrable.

In § 6, we shall first construct the prolongation of affine connections (Theo-
rem 6.1), and next show that the prolonged affine connection F4 is locally

Received May 29, 1970, and, in revised form, December 6, 1975.



480 AKIHIKO MORIMOTO

affine symmetric if and only if I is.

In § 7, we shall give a proof for the fact that if M is an affine symmetric
space then M+ is also so. In such a manner, we obtain a method to construct
a large number of affine symmetric spaces (resp. complex manifolds) from a
given affine symmetric space (resp. complex manifold), (cf. [10, Introduction]).

In this paper, all manifolds and mappings (functions) are assumed to be
differentiable of class C*, unless otherwise stated.

The author wishes to thank Professor J. L. Koszul who gave him an op-
portunity to stay at the University of Grenoble and suggested the idea of A-
module structure in § 2, which has essentially improved [6, Part V].

1. Infinitely near points of 4-kind

In this section we shall recall the notion of local algebras and infinitely near
points of A-kind in the sense of A. Weil [7].

Definition 1.1. Let A be an associative algebra over the field R of real
numbers with a unit (denoted by 1). We call 4 a local algebra if 4 is com-
mutative and of finite dimension over R, admitting a unique maximal ideal m
such that 4 /m is of dimension 1 over R and that m**! = (0) for a nonnegative
integer 4. The smallest / such that m**! = (0) will be called the height of A.
We shall identify the field R with the subspace of A consisting of all scalar
multiples of the unit 1. Clearly A4 is the direct sum of R and m as a vector
space. If a € A, the scalar q, ¢ R, defined by a = a, mod mt, will be called the
finite part of a. If A/m is identified with R, the map a — q, is 2 homomorphism
of A onto R.

Let R[p] = R[[X,, - - -, X,]] be the algebra of all formal power series of p
indeterminates X, - - -, X,, and let m, be the maximal ideal of R[p] consisting
of all formal power series without constant terms. Let a be an ideal of R[p]
such that dim R[pl/a < + oo. We see that 4 = R[p]/a is a local algebra with
the maximal ideal m = m,/a. Conversely, we know that every local algebra
is isomorphic to such a local algebra (cf. [7, p. 112}).

Let M be a manifold of dimension », and let C*(M) be the algebra of all
differentiable functions on M. Take a point x € M.

Definition 1.2. Let A be a local algebra with the maximal ideal m. An
algebra homomorphism x': C*(M) — A will be called an A-point of M near
to x (or infinitely near point to x on M of A-kind) if the finite part of x'() is
equal to f(x), i.e.,

(1.1) x'(f) = f(x) mod m

for every f ¢ C*(M). We denote by M# the set of all A-points of M near to x
and M4 = (J,cx M2, and define z,: M<4 — M by n,(M$) = x for x e M.

Remark 1.3. If x’ ¢ M4, and f € C*(M) vanishes identically on a neighbor-
hood of x, then we see that x'(f) = 0.
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This remark shows that we can consider x'(f) for any differentiable function
f defined on a neighborhood of x if x’ ¢ M4,

Remark 1.4. If we take a = (m,)"™", and 4 = R[p]/a, then we see that
the notion of A-points is nothing but the notion of p7-jets (cf. [11, [2], [7D.
In particular, if a = (m,)?, D = R[1]/a, then the notion of D-points is nothing
but the notion of tangent vectors on M. We denote by 7 = #n(X,), where X is
the indeterminate in R[1] and =: R[1] — D is the natural projection.

Let U be a coordinate neighborhood of x, in M with coordinate system
{*, -+ +, x,}. Take a basis {I = B°, B', - .-, B¥} of a local algebra 4, where
B, - - -, B¥ span the maximal ideal m of 4. We define x, ;: z;%(U) — R by

N
(1.2) Z x; (X )BF = x'(x;) ,
for any x’ € n;'(U), where we have used Remark 1.3 for f =x, (i = 1,

-, n). We see readily that the set M# becomes a differentiable manifold of
dimension n(N + 1) by the coordinate neighborhoods z7*(U) with coordinate
system {x;,|i=1,.--,n;2A=0,1, - .-, N} induced by the coordinate system
{xy, - -+, x,} on U. Clearly this differentiable structure on M+ does not depend
on the choice of the basis {B’, - - -, B¥} of 4.

Definition 1.5. The differentiable manifold M+ defined above with the
projection r,: M+ — M will be called the bundle of A-points of M (or bundle
of infinitely near points of M of A-kind).

Remark 1.6. The notion of bundle of D-kind is the same as that of tangent
bundles. A tangent vector X € T, M at x is identified with x’ € M? defined by
X (f) = f(x) + (Xf)-z for f e C=(M).

Let @: M — M’ be a map of a manifold M into a manifold M’. Then the
map @4: M* — M’# is defined by

(1.3) (@4(x)Ng = X' (g D)

for x’ e M4 and g e C~(M"). Clearly @4 is differentiable.
Lemma 1.7. Let 7,: M, X M,— M, (i = 1,2) be the projections. Then
(M, X M,)* can be identified with M{ X M3 by the following identification

1.4) = (7(x), n3(x))

for x’ e (M, X M,

Proof. Straightforward verification.

Lemma 1.8. Let @,: M, —- M|, $,: M, - M, ¥ : M, — M and @: M}
— M be differentiable maps, M,, M}, M,, M, M7, M being manifolds. Then we
have the following equalities :

(@10 @) = DA Df (0, X D)% = & X &%
(@, ¥)* = (01,7,  (Ip)* = lya,
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where 1, stands for the identity map of M. Further, if we denote by =, (resp.
%, the projection of M, X M, (resp. M{ X M%) onto M; (resp. M{) for i =
1,2, then we have nf = %, (i = 1, 2).

Proof. Straightforward verification by using (1.3) and (1.4).

Lemma 1.9. R4 can be identified with A by R4 > x' — x'(Y) € A, where t
is the natural coordinates on R.

Proof. Straightforward verification (cf. [7]).

Lemma 1.10. Let A and B be two local algebras. Then we can identify
AZ with A @ B (cf. [7)).

Lemma 1.11. A, B being as above, we can define canonically a diffeo-
morphism +r: (M4)F — MA4®5,

Proof. Take x'" ¢ (M4)® and f e C=*(M). Since f: M — R is a C*-map, we
can consider the map f4: M4 — R4 = A (cf. Lemma 1.9). Hence using the
map (f9)%: (M*)? — A2 = A ® B we can consider the map x": C*(M) — 4
& B defined by x'(H) = (fH3(x"") ¢ A ® B, which is easily seen to be an 4 & B-
point on M. Thus we get a map x” — x’ from (M4)® to M4®2, which can be
verified to be a diffeomorphism (for detail, see [7]).

Corollary 1.12. A4 and B being as above, we can identify x" ¢ (M*4)2 with
x) € (MB)4 for elements x” and x)’ characterized by

FHE") = (FF)4(x)

for every f e C*(M), where we have identified A ® B with B&Q A.

Proof. Clear from the proof of Lemma 1.11.

Lemma 1.13. Let G be a Lie group with group multiplication n. Then G4
becomes a Lie group with group multiplication pt: (G X G)* = G4 X G4
— G4,

Proof. Omitted (cf. [7]).

2. A-module structures on the tangent spaces of M4

In this section, we define canonically an 4-module structure on the tangent
space of M4 at every point of M4,

Let #: R X M? — M? be the scalar multiplication of the tangent vectors
of M, ie., u(t,X) =¢t-X for te R, X ¢ M?. Since R* = A and (MP)4 =
(M4)? by our identification (cf. Corollary 1.12), the map u4: (R X M?)4 =
R4 X (MP)4 — (MP)4 can be considered as the map g4: 4 X (M4)? — (M4)?.

Definition 2.1. Put p4(a, x””) = a-x" forae A, x”’ ¢ (M4)?. We denote by
r, (resp. #,) the projection M? — M (resp. (M4)? — M4),

Lemma 2.2. The notation beirig as above, we have

(i) #pla-x") = #p(x") for every ae A and x"” ¢ (M4,

(i) for any x’' € M4, the tangent space (M#*)Z becomes an A-module by
the multiplication (a, x’) — a-x" for (a,x") e A X (M*)E.

Remark 2.3. In fact, in the next section (cf. Corollary 3.10) we shall show
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that (M4)Z is a free A-module for any x’ ¢ M“.
Proof of Lemma 2.2. (i) Consider the following diagram:

1xj 4 i
RA X (MA)D 5 RA X (MD)A (MD)A (MA)D
@.1) mwl (oo | (=p)* -DJ(

Y Y

M4 M4 > M4 M#

where 7,: R4 X (M4)? — (M4)? (resp. =,: R X M? — MP) is the projection
and j7! = {: (M?)4 — (M4)? is the identification map (cf. Corollary 1.12).
Since 7y oy = 7y o m,, the middle rectangle of (2.1) is commutative. It is now
sufficient to verify the commutativity of the right rectangle of (2.1), because
a-x" = ({opte(l X P)a,x”) for (a,x”) € A x (M#)?, and the commutativity
of the left rectangle is implied by that of the right one.

Take x”” ¢ (MP)4 and put x{ = i(x”") € (M#)?. Then for any f ¢ C*(M), we
have

2.2) #)Ax") = (FHP()

(cf. Corollary 1.12), where we have identified: 4 @ D = D ® 4. To show
that (z,)4(x”) = Z,(x}), it suffices to show

(2.3) (@)D = @D

for f € C~(M*4). (2.3) is equivalent to

2.4 x'(fomp) = fAZp(x1)) -

Now, we know that f? = fcx, (mod R-7), where D = R @ Rz. Therefore we
have (f4)? = f4o7, (mod A @ Rz). Considering the A-components of (2.2)
in ARD=A®P AR Rz, we obtain (2.4), since (fO)4(x") = x"(fP) =
x"(forp) (mod A @ R-7). Thus (i) is proved.

(i) Letyg:R X R— Rand p,: 4 X A— A be the multiplication in R and
A respectively. We see easily that (g)* = p,. The equality (¢-5)- X = £-(s-X)
for z,sc R and X € MP can be written as pgo (gyomy,, 73) = po(my, gomy),
where 7, RX RXM—-RXR, 7;: RX RXM—M etc. denote the
natural projection. Then by the functoriality of p — z#, etc. (cf. Lemma 1.8)
it follows that p*o (u,o0iy,, 7)) = pto (7, uto&y), where 7,0 4 X A X M4
— A X A etc. denote the natural projection similar to x,, etc. Thus we get the
associativity: (a-b)-x"’ = a-(b.-x") fora,be A, x'’ ¢ M*.

The distributivity (@ + b)-x’ = a-x" + b-x",a- (X' + XY = a-x' + a-x"
are similarly proved by using the addition «: M? & M? — M? of tangent
vectors, where M? @ M? denotes the Whitney sum of the tangent bundles M?
with itseif.
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Remark 2.4. We can prove (ii) of Lemma 2.1 more quickly by using the
local coordinate system around x” e (M?)4 and the local expression of y* by
coordinates. In fact, taking a coordinate system {x,, - - -, x,} around x, we see
that

2 G, (X )CE e=1),

X a(a-x") =
" X, 0 (%) (€=0)
fora = 3] aB", B*-B* = 3, Cy*B* (cf. (1.2)).
We want to give another interpretation of the 4-module structure on the
tangent space T,.(M4) with x’ ¢ M4, Let L ¢ T,(M*) be a tangent vector at
x’ e M. Then there exists a curve ¢ — x, on M4 such that x; = x” and that

2.5) Lj = 4
dt

t=0
for f € C=(M4). We define L’: C*(M) — A by

2.6) rf = 4=
dt

t=0

Lemma 2.5. The map L': C=*(M) — A is well-defined and linear, and has
the property
2.7) L'(f-g) = L'f-x'(&) + x'(f)-L'g
for f,g € C=(M).

Proof. Since x/(f) = f4(x}), x/(f) is differentiable with respect to ¢ and

____ngt(f) = L(f4), (cf. (2.5)). If another curve x; on M+ satisfies x; = x’

t=0

17
= D) Thes 17is well-
=0 dt =0

and Lf = Ml , then we have djzt(f)

dt =0

defined.

(2.7) can be verified directly.

Definition 2.6. We denote by T,.(M4) the set of all linear map L': C=(M)
— A such that (2.7) holds for every f, g € C=(M).

Remark 2.7. For L' ¢ T, M4, we can define L’#z for any C=-function &
around x.

Thus we have obtained a map j: 7,.M* — T,.M4 by j(L) = L/, (cf. (2.6)).

Lemma 2.8. The map j is a bijective linear map.

Proof. LetL,, L,e T,M% ForfeC>(M)wehave(L, + L,)f = (L, + L)f*
= L,f* + L,f* = Ljf + L:f = (L] 4 Ly)f. Similarly (aL,)’f = (aL)f* = a(L.f*)
=a(L;f) = (aL))f for « € R. Thus j is linear.

To prove the bijectivity of j, we first prove
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2.7 dim T.M* < dim M+ .

In fact, take a coordinate system {x,, ---,x,} around x, and consider the
linear map g: T,M* — A" by g(L") = (L'x,, -- -, L’x,). We show first that g
is injective. Take L] and L; e T,M* and assume Llx;, = Lix, for every i =
1, .-, n. For any f e C*(M) we can find a polynomials P, Q of x,, - - -, x,, and
g € C*(M) such that

f=P+g-Q

holds on some neighborhood of x, where Q is homogeneous and of degree >
height of A. Then we have

Lf = Li(P) + Li(e)x"(Q) + x'(9LI(Q)
= Li(P) + ¥'(@LY(Q) = Li(P) + x'(®)LYQD) = L;f ,

where we have used the fact that x'(f, - - - f,) = 0 for f, e C=(M) with f,(x)
= 0. Thus L] = L;, which proves the injectivity of g. Therefore we get (2.7).

To prove the injectivity of j, it suffices to show that L’f = O for every fe
C=(M) implies L = 0. Now . L(x,,)-B* = L(x;*) = L'x, = 0, which implies
L(x;))=0foranyi=1,---,n;2=0, ---,N. Thus L = 0. The injectivity
and the inequality (2.7) imply the bijectivity of j.

Remark 2.9. 7/.M+* becomes canonically an 4-module, i.e., fora ¢ 4 and
L’ ¢ T (M%) we define a-L’ e T,.(M*) by

(@-L))f = a-(L'f)

for f e C=(M).
Lemma 2.10. For any ac A and L ¢ T, (M%), we have

2.8) (@-LY = a-L’.

(Cf. Definition 2.1 for a-L).

Proof. To make the several identifications more clear, we introduce the
following notation. For L ¢ T,.M+* the identified element in (M4)Z will be
denoted by L*, and conversely for K ¢ (M4)2 the corresponding element in
T.M# will be denoted by *K. Similarly for S ¢ T,.M“, we denote 'S = j~(5).
Further for L* ¢ (M4)? the corresponding element in (M?)4 will be denoted
by L¥. Then (2.8) means more precisely

(2.8) (*(a-L¥) = a-L’.
Now (2.8) is equivalent to

(2.8)” p#(a, LY) = ((aL")¥ ,
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which is equivalent to
2.8 () pHa, L)) = (FHP(((al))*)

for f e C=(M).
The left hand side of (2.8)" is equal to

(2o W@, L) = (a, L¥)(Po )
while the right hand side of (2.8)" is equal to
(@LN*@E) = fAx) + (al)f4-«
= f4x") + (a-L)f-c = f4x) + a-L'f-z .
Therefore it remains to verify
2.9) (@, L o ) = f4x) + a-L'f-=

for f e C=(M).
Now, since L* and L} are corresponding elements in (M4)? and (M?)4,
we have

(2.10) (FPIULE) = (FHP(L*)

for f e C=(M).
Put K = (a, L¥). Then we have K(gom) = a(g), K(g'on,) = L") for
g€ C=(R), g’ ¢ C=(MP). Next, we have, for (¢, X) ¢ R x M?,

(f? o ), X) = fP(1X) = f(zX) + (¢ X)f-7
= (fOTC)OTTZ(Z,X) + (1°7r1(t> X))'”Z(t’ X)ff
= (fom)omy(t, X) + (lem)-(for)(t, X) 7,

where f' ¢ C*(M?) is defined by f(X) = Xf for X e M?. Hence we have

K(Pop) = K((om)om) + K om)-K(f o)z

2.11)
= L¥{fox) + a-L¥f -z .
On the other hand, from (2.10) we get

HALE) = L¥(f?) = Lif(fex + f-7) = Li¥(fem) + Lif -7,
FHP(L*) = L*(f4) = fAx) + Lf*-c = f4x) + L'f-z,

which imply
2.12) L(fom) = f4(x") , L¥f = L'f .
Combining (2.10), (2.11) and (2.12), we get (2.9).
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3. Lifting of vector fields

We denote by 7 5(M) the set of all vector fields on M. Take X ¢ 7 (M).
The corresponding X”: M — M? is defined by

(3.1 X'@)f = fx) + XNz D

for f e C*(M) and x ¢ M. The map X’ induces a map X’'4: M4 — (MP)4,
Consider the map X = io X’4: M4 — (M4)?, where i: (MP)4 — (M4)? is the
identification map. The commutativity of the right triangle of the diagram (2.1)
implies that X(x') e (M4)2 for every x’ ¢ M4. Hence by Remark 1.6 we obtain
a tangent vector in T,(M+) corresponding to X (x’), which we denote by X4(x’).

Thus we obtain a vector field X4 ¢ 7 5(M4).

Definition 3.1. The vector field X4 is called the lift of X to M4.

Remark 3.2. Any X ¢ I¥M*) can be extended to a derivation of
C=(M4, A) by

X} = X(Z 1.B) = T (Xf) B,

where {1, B', - .., B"} is a basis of 4, and § = }] f,B® with f; ¢ C=(M4).
Lemma 3.3. For any X ¢ 7 ¥(M) and f ¢ C*(M), we have

(3.2) (X4 = X414 .
Proof. We have to show
(3.3) XNH4(x) = X4f4)(x)

for x’ e M4. Put x”/ = X’4(x’) e (MP)4. Then x{ = (X4(x")) is the element
corresponding to x” in (M#4)® (for the notation ( )’ see Remark 1.6). Using
Corollary 1.12 we have

1) = (FH2(x) = /() = XAy 4
= fA(x) + X4(xH)f4-7 .
The left hand side of (3.3) is equal to

3.4

(3.5) () X)) = (fPo X)) = x'(fPo X') .
Since

(P X)(x) = fAX'(®) = X' = fx) + (XNH) -«
= (f + Xf-o)(x) ,

(3.5) is equal to
(3.6) () + ¥ (Xf)-r = fAX) + (XHAX) -7 .
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Comparing (3.4) and (3.6), we obtain (3.3).

Lemma 3.4, The map X — X4 is linear.

Proof. Take fe C*(M) and X, Y ¢ ¥M). Then by Lemma 3.3 we have
X + V) = (X + NH* = Xf + Y4 = XN* + TH* = X4 + Y44
= (X4 4 Y9f4, and therefore (X + f = (X + V)44 = (X4 + Y494
= (X4 + Y4)f, which implies (X + Y)4) = (X4 + Y4y (for the notation
( Y see Lemme 2.8). Hence we get (X + Y)4 = X4 + Y4, Similarly,
(- X4 =a-X4forae R.

Lemma 3.5. For any f e C*(M) and X ¢ T{M), we have

(3.7 (f-X)* = 4. X4,
equivalently,
FX4x) = fAR)XAX)

for every x’ ¢ M4 (cf. Definition 2.1).

Proof. Let u: R X M? — M? be the scalar multiplication of tangent
vectors. Identifying X with its corresponding X’ : M — M? (cf. Definition 3.1),
we have

(204 = (o (F, XD = o (, 04 = pho (4, X4) = f4.X4 .

Definition 3.6. For X e 7Y(M4), we define a map X' Co(M)— C>(M4, A)
by

X'NE) = XE)T = (X&)

for f e C*(M) and x’ ¢ M* (cf. Remark 2.7).
Remark 3.7. By Lemma 2.8, we have

¢-Xy =g-X

for ge C=(M4, A), X ¢ TyM4).
Lemma 3.8. Foraec A, Xe T¥M) and f e C*(M), we have

(3.8) (a-X9f* = a-(XH* .
Proof. We have
(@- X9 = (a-X4f = a-(X4'f) = a- (X4f*) = a-(XH))*,

where we have used Lemma 2.5, Lemma 3.3 and Remark 3.7.
Lewmma 3.9. Let {x,, ---,x,} be a coordinate system on some neighbor-
hood of M. Then we have

(3.9 B (3/0x;)* = 3/0x;,;
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fori=1,.---,n;A=0,---,N.
Proof. We have (B3/0x;)*)(x;)* = B*(dx,/d9x;)* = B*8,;)* = B*-§,;. On
the other hand we have

/0%, x* = 0/02,)(Z 2,,B') = 6., -

Hence we get (3.9).
Corollary 3.10. For any x' ¢ M4, the A-module T M4, is a free A-module.
Proof. Take X, = (@/ox)2 (=1, ---,n). Then {X, -, X,} is a free
A-basis of T,.M*,
Lemma 3.11. For any X,Y ¢ 9 M) we have

[X4,Y4] = [X,Y]4.
Proof. For any f e C*{M), we have
[X4, YAf4 = XAY4f4 — YAXAf4 = (XYf — YX)A4
= (X, YIN* = [X, Y]4f4 .
Hence we have
(X4, Y41f = [X4, Y4If* = [X, Y]*H = (X, Y14)f

which implies [X4, Y4} = ([X, Y]4)’ and hence we get [X4, Y4] = [X, Y]4.
Lemma 3.12. Foranya,bed and X,Y ¢ 9 (M) we have

(3.10) [aX4, bY4] = (a-b)-[X,Y]4.
Proof. We calculate as follows: for any f € C*(M)

laX4, bY41f* = (aX“)(bYH)f* — (Y *)(aX)f*

= (a- X9 (YH*) — bY*(a- (X))
= b-(aX*(YN)4) — a-(bY*-(XH)*)
=b-a-(XYH* — a-b(YX)4
= (a-b)-([X, YIH* = (a-b)([X, YI*f*)
= ((ab)[X, Y194 .

By the same argument as in Lemma 3.10 we get (3.10).

Remark 3.13. We can verify that if {¢*} is a one-parameter group of dif-

feomorphisms on M generated by a vector field X, then the one-parameter
group {(#%)“} induces the vector field X4.
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4. Lifting of covariant tensor fields

Take f ¢ C*(M). Since f4: M4 — A is an A-valued function, we can consider
dft: T(M4) — A. On the other hand, since df: M? — R is a function, we can
consider (df)4: (M?P)4 — R4 = A.

Lemma 4.1. Identifying T(M%) = (M4)? with (MP)4, we have

4.1 @dnNt = df+ .

Proof. Let = (resp. ) be the projection n: RP = R@R-t— R-t =R
(resp. #: AP =ADA-t > A.-v = A). Then we have, by definition, df =
mof?, df*t = 7o (f4)?. Hence (df)* = n4 o (f?)4. Then the commutative diagram

(F4)D 7
(M4)P? ——> A? —> 4

= =
Dy4
(MP) _Ef—D)_A) D4 — A
proves (4.1). q.e.d.

Take a 1-form 6 ¢ 7 YM). Then 6 can be considered as a function §: M?
— R. Hence 64: (M?)4 — A is an A-valued function on (M?)4 = (M4)?. To
prove that 4 is in fact a 1-form on M4, we shall first prove

Lemma 4.2. Take 6,,0, ¢ T AM). Then we have

(4-2) (01 + 02)A = 01A + 02“1 .

Proof. Leta: R X R— R (resp. wy: A X A — A) be the addition in R
(resp. A). Then we know that ¢, = a4, and therefore that

6, + 02)‘4 = (ao (6, 02) 4 =g 0(51‘4, 02A)
= w 00,46, = 6% + 6,4 .

Lemma 4.3. For fe C*(M) and 6 ¢ TYM), we have
“4.3) (f-0)4 = f4.64 .

Proof. Let gy: R X R— R (xesp. u,: A X A — A) be the multiplication
in R (resp. in A). Then we know (14)4 = 4, and therefore (f-6)4 = (g0 (f, )4
= (po)* o (f4,04) = pqo (4,04 = f4.64.

Lemma 4.4. For any 6 ¢ 7Y(M), we have 64 ¢ T I(M*4).

Proof. Since the problem is local, we can assume that § = 3 g, df; with
g f: € C*(M). By (4.1), (4.2), (4.3) we have 04 = 3 g,*df,4, which is a
1-form on M4.

Lemma 4.5. For 8 ¢ 7{(M) and X ¢ T (M), we have



PROLONGATION OF CONNECTIONS 491

(4.4) OX))4 = 64X4) .

Proof. The function (X): M — R can be written as §(X) = 6 X, where
X:M— M? and 6: M? — R. Hence we have ((X)4 = (B X)4 = 4. X4
= 64(X4).

Lemma 4.6. For 6 e (M), ae A and X ¢ T_(M4), we have

4.5) 64(a-X) = a-64X) .

Proof. Since 6(¢-X) = t0(X) for 1 € R and X ¢ T(M) we have (fo w)(t, X)
= 0(X) = p(t, 6(X)) = p(1 X 6)(t, X). Hence (fop)* = (g)*o(1 X 64) =
za° (1 X 64), which implies (4.5).

Since 64 is an A-valued 1-form on M+, we can consider it as 4 ¢ J {(M*)
& 4. We can easily verify

Lemma 4.7. 7% (M%) ® A becomes an associative graded algebra over A
with the multiplication :

K, ®a)®K,®a) =K K, ® (a,a)

for K,,K, e T 3(M*) = >,, T (M*) and a;,a,¢ A.

Lemma 4.8. The map L: 7 (M) —» TL(M*) ® A defined by L(6, ® - - -
Qb)) =04® - &g, for 6; e TUM) is an algebra homomorphism.

Proof. Let L: (7 {M))?— T %M*) & A be defined by L4, - - -,8,) = 0,*
@ --- @6, Itis easily checked that L(f,6,, - - -, {8, = (fy - - - fQAL(G,, - - -,
8, for f, e TYM), 6, € T Y(M). Hence there exists a map L : 7 Y(M) — T {(M*)
& Asuchthat LG, ® --- ®8,) = LG, - - -,6,). Now it is easy to see that L
is an algebra homomorphism.

5. Lifting of (1, 1)-tensor fields

Let K ¢ T4M) be a (1, 1)-tensor field on M. Then K can be considered as
amap K: M? — MP? such that 7K = z. Then K4: (M?)4 — (M®)4 can be
considered as K4: (M4)? — (M4)?.

Lemma 5.1. K4 is a (1, 1)-tensor field on M4.

Proof. Since the problem is local, we assume K = ), 4, ® Y¢ with 6; ¢
FYM) and Y¢ e (M), Then

K(X) = 2 60,(X)Y" = ¥ ul6:X), (Yo m)(X))
= (a'r ° (/10 (01’ Yo 7:), oty MO (01', Yo ﬂ)))(X) »

where «,: R” — R is the addition «.(ay, ---,a.) =a, + --- + a, for a, ¢ R.
Hence we have

K4 = (a'r)-4 ° (,'1:1 ° (01:1, (YI)A ° ﬁA), Tt #‘4 ° (07‘4, (YT)A ° EA)) >

which implies
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K4X) = 3 6,4%)- (Y94
for X € (M4)?. Thus K4 ¢ T HMA).
Lemma 5.2. For Ke JYM), X ¢ 7Y M) and a e A, we have
K4a-X4) = a-(K(X))4 . |
Proof. As before, we can assume K = >, 8, ® Y,. Then

K4a-X4) = 7 6;4aX*)-(YH* = 3 a-04X“)(T)*
= a- 3 @;XN*(Y)* = a- (X 6,X)Y)* = a-(KX)* .

Theorem 5.3. Let J ¢ (M) be an almost complex structure on M. Then
J4 is an almost complex structure on M4. Moreover, J4 is integrable if and
only if J is.

Proof. Let I be the (1, 1)-tensor field of identity maps of T .M for x ¢ M.
Since I = 3" dx, ® §/dx, locally, we get, for X e (M4)?,

0

(@) = 3 (dx)4D) ® (i) = 3 dxAX)-
ox; X:0
. d CF 2 a _ a _ <
= ) dx; (X)B =X dx s —=X,
0x;,¢ 0x;

where we have used (3.9) and (4.5). Thus we have J4oJ4 = (Jo )4 = (—D4
= —I4 = —J, where s the (1, 1)-tensor field of identity maps of M. Hence
J4 is an almost complex structure on M4,

Next, J is integrable if and only if

5.1 JIX, Y]l =[UX,Y] + [X,JY] + J[JX,JY]
for every X, Y ¢ 7 5(M). Using Lemmas 3.12 and 5.2 we have

J4[ax4, bY4] = J4(ab[X, Y14 = (ab)(J[X, Y]
= (@b){[J4X4, Y4] + [X4, J4Y4] + J4[J4X4,J4Y“]}
= [J4aX*), bY*] + [aX#, J4bYH] + J4[J4(aX4), J4(bY*)]

fora, b e A. Since T,M* is a free A-module (Corollary 3.10), we conclude
that J4 is integrable. Conversely, if J4 is integrable, we get

(VIX, YD = VX, Y] + [X,JY] + JUX,JY]4
for X,Y ¢ 93(M), which implies (5.1), and hence J is integrable.
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6. Prolongations of affine connections

Let 7 be the covariant differentiation defined by an affine connection of M.
In the sequel, for the sake of convenience of notation, we shall denote by
V(X, K) the covariant differentiation of a tensor field K on M with respect to
X e Ty M), i.e.,

F(X,K) =VxK .

Theorem 6.1. There exists one and only one affine connection on M4 whose
covariant differentiation V satisfies the following condition

6.1) Voxa BY4 = (ab)(V z Y)*

forevery X, Y e TXM)and a,be A.
Proof. Take a coordinate neighborhood U with coordinate system {x,, - - -

k

x,} and let I, ;* be the connection components of // with respect to {x,, - - -, x,,},
i.e.,
6.2) V( 8 ) I
0x; 8x &

fori,j=1,---,n. Let I'{,* be the connection components of // with respect
to another coordinate system {y,, - - -, ¥,} on U. Then we have the following
equalities :

, ox, 0x, 0y, *x, Oy
6.3 Ik, = b e ZIE[N,e. e JE
©3 1=l an T L Ty, o

fori,j =1,2,..-,n (cf. for instance [3, p. 27]). Let {x;,|i=1,.-.+,n; 2 =
Oz 1, - -+, N} (resp. {y,,}) be the induced coordinate system on = ,~*(U). Define
I, BY

(6.4) 3 L™ 0B = BB #)4

fori,j,k=1,-+-,n; 4, v =0, 1 --,N, where {B°=1,B",..-,B¥} is a
basis of 4 as in § 1.

We shall now prove that there exists a connection §/ whose connection com-
ponents with respect to {x;,} are given by (6.4). To prove this we have to
prove the following equalities (6.5) similar to (6.3):

" 0x ax,, 0y «
B = 25— 2 AR
i, 0V, 0%,

0 Xa,e  OViu
G o

’
Iy

,y)

(6.5)
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fori,j,k=1,---,n;2, 1,0 = 0,1, .-, N, where I}, ,*%,  denote the con-
nection components of 7 with respect to the coordinate system {y, ,}. Denoting
the right hand side of (6.5) by I'% %%, , and using Lemmas 3.8 and 3.9, we
calculate as follows:

Z F(z v) (.7 ;l) B
0x,; 0x, (ayk) BT X, (ayk)A «
1 35 7 Ik 5 a,a . + . raa B
3y:, 8y,, \ox, @ e 5Y:,8Y 5., \01x,
= axb"s ._.___ax"’r_(_a_y—k)AB’gBr(Fbac)A + ——a ( axa = B )(-%)A
0y:, 0y;, \ox, 0y, \ 3Y;, 0x,

(o) 2+ (5 w(2)
ayi ay_; ax ’ ayi,y ay.‘l axa

- (B o @ o) w25 v ()
0y, 3y; 0x, 3y:0¥; ox,
= BB(I'*)* = I',,)*7; ,B",
which implies (6.5).
Thus we have proved the existence of // whose connection components with
respect to {x; .} are given by (6.4).
Next, we shall prove (6.1) for X = 9/dx;, Y = 9/0x;, anda = B*, b = B~

We calculate as follows:
a ) ~ , a
=1 . (%,»)
X, ) ) (axz . ox;, @R ok
9

(5 (52) 2

14 o a 4
= LasunB ()" = Bowa (L)

Bsz (]’ k __Q_)A BZBF( ( 0 a ))A R
Tox ox; ax

which proves (6.1) for X = d/0x;, Y = 9/dx; and a = B*, b = B* and hence
for arbitrary a, b ¢ 4.

Now put X; = 9/ox; fori = 1, - - -, n. We shall prove (6.1) for X = X,
Y = X, with f e 7YU). We calculate as follows:

Plax4, bY4) = Pla(f-X )4, b-X O (af*- X4, b-X 4)
= af*V(X;*, bX ;*) = abfA(F(X;, X )
= ab(fV (X, X ;))* = ab(P(fX;, X ))* = ab(P (X, Y))* ,
which proves our assertion. Therefore we see that (6.1) holds for X ¢ 73(M)

and ¥ = X; with j = 1, - . -, n. Next we prove that (6.1) holds for X ¢ I (M)
and ¥ = f-X; with fe gYU) and j = 1, - - -, n. We calculate as follows:
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Pla-X4,b-Y4) = P(a-X4,b(f-X )*) = V(aX4, bf*-X 4)
= f4F s DX A + aX4(bfHX ;4 = fAab(P Y )* + ab(Xf)4X ;4
= ab(fV yY ; + Xf- X )4 = ab(TxfY )* = ab(V (X, Y))* ,
where we have used Lemmas 3.5 and 3.8.
Thus we have proved (6.1) for any X,Y € (M) and a,b e 4. The uni-
queness of such  follows from Lemma 3.9.
Definition 6.2. The unique affine connection ¥ in Theorem 6.1 will be
called the prolongation of V to M4 and will be denoted by V=r4
Theorem 6.3. Let T and R (resp. T and R) be the torsion and curvature
tensor fields of V (resp. ¥ = V4). Then accordingas T =0, VT =0, R=0
or VR =0, we have T = 0, VT = 0, R = 0 or YR = 0 and vice versa. In
particular, if M is locally affine symmetric with respect to ¥V, so is M* with
respect to = F4.
Proof. First we prove

(6.6) T(aX4, bY4) = ab(T(X, Y))4

for X, YeJiM) and a, b ed.
In fact, by the definition of 7', Lemma 3.12 and (6.1) we get

T(@X4, bY4) = P abY4 — F,paaX4 — [aX4, bY4]
= @)V xY —VyX — [X,Y])* = ab(T(X, Y))* .
Thus we see that T = 0 if and only if T = 0 (cf. Corollary 3.10).
Similarly we know that R(aX4, bY4, cZ4) = (abc)(R(X, Y, Z)4for X,Y,Z

€ Y M) and a, b, ¢ € A, from which we see that R = 0if and only if R = 0.
The proof for the case 'T and /R is similar.

7. Affine symmetric spaces

Lemma 7.1. Let @ be a diffeomorphism of M onto M’ and let X ¢ (M)
and a ¢ A. Then we have

(7.1 TPH(aX4) = a((TH)X)4 .
Proof. Take f e C*(M). We have
(@HP(aXHf = (@aX4)(f40 04) = (aX“)(fo P)* = a-X4(fo D)4
=a-XFe0)* = a-(P?X)N* = a-(PPX)4f4)
= (a(@?X)Hf4 ,

from which follows (7.1).
Lemma 7.2. Let V (resp. V') be an affine connection on M (resp. on M’)
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and let @ be a diffeomorphism of M onto M’ transforming V onto V'. Then
@4 transforms V4 onto V'4, ’
Proof. Take X,Y e TM). Then we have, fora,b e A4,

TOAW 254 bY4) = TP4(ablV 3 Y)4 = ab(TPF xY))* = ab(V e TPY)4
= V{z‘%TwX)A b(TQjY)A = VITwA(aXA>T¢A(bYA) s

where we have used Lemma 7.1. Since X, Y,a, b are arbitrary, Lemma 7.2
follows.

Lemma 7.3. Let X ¢ T3(M), and x,e M. Assume X, = 0. Then (X4),,
= 0, where X, € M4 is defined by %,(f) = f(x,) for f e C*(M).

Proof. Let @' be a local one-parameter group of local diffeomorphisms
around x, generated by X. Then X4 generates the local group (¢%)4 around X,
(cf. Remark 3.13). Since @%(x,)) = x,, we get (99)4(%,) = X, and therefore
(X4);, = 0.

Lemma 7.4. Let @: M — M be a diffeomorphism such that there exist
xeM and aeR with O(x) =x, and T, D = -1y, y. Then T;04 =
- 1rs a4

Proof. Let {x,, - --,x,} be alocal coordinate system around x,. By Lemma
7.1 we have T@4(9/ox,)* = (T®(@/0ox,))4 fori =1, - - -, n. Hence we get

To4((8/0x)2) = (TP4@D/0x.)),, = (TPO/0x.))3, -

Put X = T9(@/0x;) — «(3/0x;). Then X is a vector field around x, on M with
X,, = 0. Therefore by Lemma 7.3 we get (X4);, = 0, which implies

(T900G/0x:))z, = (2(@/9x )%, = a-(3/3x)5, -
Take an arbitrary a € 4. Then we have
To4(a(@/0x: )4, = a-(TPB/0x.))5, = a-a@d/0x), = - (a(@/0x,)3) .

Since {a(9/dx;)*|a e A} span the tangent space T ;M* (cf. Lemma 3.9), we
get T 04 = - 17, yu-

Corollary 7.5. Let @ be the affine symmetry at a point x, € M with respect
to an affine connection V on M. Then @4 is the affine symmetry of M* at %,
With respect to V4.

Proof. Since @ leaves IV invariant, @4 leaves /4 invariant by Lemma 7.2.

Next, since @ is the affine symmetry we see that 7,0 = —1,_,. Thus by
Lemma 7.4 we get T, 0% = —1r, 4, Which means that @4 is the affine sym-
metry at X,.

Proposition 7.6. Let IV be an affine connection on M and let X ¢ Ty(M)
be an infinitesimal affine transformation of V. Then, for any ae A, aX* is also
an infinitesimal affine transformation of V4.
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Proof. A necessary and sufficient condition for X to be an infinitesimal
affine transformation of M is that

LX°VY - VYOLX = V:X,Y]

for every Y ¢ (M), where Ly (or L(X)) denotes the Lie derivation with
respect to X. Therefore we have to prove

(7.2)  L@-XHW4Y,K) — r“{, L@aX4K) = r(ax4,Y1,K)

for every K ¢ 7 (M%) and ¥ € 73(M4). To prove (7.2) it suffices to prove
(7.2) for the special cases, where ¥ = bY4 with Y e YM), be 4, and K =
c-Z4or 64 with Z e 73(M), 6 ¢ 7%(M) and c ¢ A. Moreover, to prove (7.2)
for K = g4, it suffices to prove it for = df with f e TYM).

If K = ¢Z4, we calculate as follows:
LoxaVyya€Z4 — Vypa Loya cZ4 = [aX4, be(FyZ)*) — 7yyalaX4, cZ4]

= abc[X, VyZ]4 — bac(V [ X, ZD4

abc((LxVy —_— Vny)Z)A = abc(V[X'y]Z)A

—F 4
= VigxapyacZ4 .

If K = df4, we have
LoxaVyya(@f4) — Vyya Loxa(@f4)(cZ*)
= (@XDF 174 dfDN(CZ4) — 7,y dfA)(aX4, cZ4) — (7 ,ya d@X4f9))(cZ4)
= @XH{BY ) (CZ4(f4) — (7yrscZ4)f4}
— [bY4[aX4, cZ4f* — (F,zdaX?, cZ4Df4)
— [BYA(cZ4Y(aX )4 — (Fyra cZ4)(aX4)f4}
= abc({LxoVy — Vyo Lg}(@N(Z2)* = abc((Vix,r(@N)D)*
= abc([X, Y1Zf — (Viz,v12))*
= [aX4, bY4)(cZ4)f4 — (ﬁ[a.XA,bYA] cZHf4
= ('/: [aXA,bYA](df)A)(CZA) .

Theorem 7.7. Let M be an affine symmetric space with connection V.
Then M4 is also an affine symmetric space with connection V4.

Proof. Let G be the connected component of the group of all affine trans-
formations of M. Then G operates transitively on M. Let X, ---, X, be a
basis of the Lie algebra g of G. We denote by X* € 7 3(M) the vector field
induced by the one-parameter group of affine transformations generated by
X e g. Now we can show that X4 is a left invariant vector field on the Lie
group G4 and that (a-X4)* = a-(X*)4 holds for ae A (the detail will be
omitted), which implies that a-(X*)4 is complete, i.e., generates a global one-
parameter group of affine transformations of M4 (cf. Proposition 7.6). Hence
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we see that any element of G4 is an affine transformation of M+#. The transi-
tivity of G shows that dim ({X¥| X ¢ g}) = dim M for any x ¢ M, which implies

dim ({(¢- (X*)V),|ae A, X e g}) = dimM*

for any x’ ¢ M4 and hence the transitivity of G4 on M4 follows. On the other
hand, by Corollary 7.5 we have an affine symmetry at X, of M4 for x,e M.
Hence M4 is affinely symmetric.

Proposition 7.8. Let I be an affine connection on M. If M4 is affinely
symmetric with respect to V4, then M is also so with respect to .

Proof. Consider the map : M — M+ defined by ({(x))f = f(x) for x e M,
feC>(M). Let y: I — M be a curve on M, where I is an open interval in R.
Put 7 = {oy. From (6.4), we see that

L .00 0C3) = 8 ()

fori,j,k=1,.--,n;4=0,1, ... N, from which we can verify that y is a
geodesic on M if and only if 7 is so on M. Further, we can conclude that the
submanifold M = (M) is a totally geodesic submanifold of M4 with respect
to /4 and that the induced affine connection /” on. M is isomorphic with ¥ by
the diffeomorphism £: M — M.

Now, take an arbitrary point x ¢ M and consider ¥ = {(x) ¢ M#. Since M+
is affinely symmetric, there exists an affine symmetry @ of M4 at %. Since
T:0 = —1ly,u4, and M is totally geodesic, we see that @(M) = M and that
@|z: M — M is an affine transformation of F’. Then @|z induces the affine
symmetry ¥: M — M of M at x.
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